Single-Trial Sparse Representation-Based Approach for VEP Extraction
نویسندگان
چکیده
Sparse representation is a powerful tool in signal denoising, and visual evoked potentials (VEPs) have been proven to have strong sparsity over an appropriate dictionary. Inspired by this idea, we present in this paper a novel sparse representation-based approach to solving the VEP extraction problem. The extraction process is performed in three stages. First, instead of using the mixed signals containing the electroencephalogram (EEG) and VEPs, we utilise an EEG from a previous trial, which did not contain VEPs, to identify the parameters of the EEG autoregressive (AR) model. Second, instead of the moving average (MA) model, sparse representation is used to model the VEPs in the autoregressive-moving average (ARMA) model. Finally, we calculate the sparse coefficients and derive VEPs by using the AR model. Next, we tested the performance of the proposed algorithm with synthetic and real data, after which we compared the results with that of an AR model with exogenous input modelling and a mixed overcomplete dictionary-based sparse component decomposition method. Utilising the synthetic data, the algorithms are then employed to estimate the latencies of P100 of the VEPs corrupted by added simulated EEG at different signal-to-noise ratio (SNR) values. The validations demonstrate that our method can well preserve the details of the VEPs for latency estimation, even in low SNR environments.
منابع مشابه
A New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملSingle-Trial Decoding of Bistable Perception Based on Sparse Nonnegative Tensor Decomposition
The study of the neuronal correlates of the spontaneous alternation in perception elicited by bistable visual stimuli is promising for understanding the mechanism of neural information processing and the neural basis of visual perception and perceptual decision-making. In this paper, we develop a sparse nonnegative tensor factorization-(NTF)-based method to extract features from the local field...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016